Short hairpin RNA targeting Notch2 inhibits U87 human glioma cell proliferation by inducing cell cycle arrest and apoptosis in vitro and in vivo
نویسندگان
چکیده
Notch signaling has been reported to be oncogenic or tumor suppressive, depending on the tissue context. To investigate the effects of Notch2 knockdown on U87 human glioma cell proliferation in vitro and in vivo, and the associated mechanisms, U87 cells were stably transfected with p green fluorescent protein (GFP)‑V‑RS Notch2 short hairpin (sh) RNA plasmid and pGFP‑V‑RS scramble‑shRNA plasmid. The former was referred to as the Notch2‑shRNA group and the latter as the negative‑shRNA group. mRNA and protein expression, cell proliferation, cell cycle and apoptosis were measured by reverse transcription‑polymerase chain reaction, western blot analysis, 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide analysis and flow cytometry using propidium iodide, respectively. Tumor volume, tumor weight and cumulative survival rate were determined in a nude mouse xenograft tumor model. Notch2 mRNA and protein expression in the Notch2‑shRNA group were reduced by 87.6 and 94.5% compared with the negative‑shRNA group (P<0.001). Notch2 knockdown significantly inhibited U87 cell proliferation after three days of culture (P<0.05). Notch2 silencing induced cell cycle arrest at G0/G1 phase by upregulation of p21 protein expression and downregulation of mini chromosome maintenance complex 2 and cyclin‑D1 protein expression. Furthermore, knockdown of Notch2 also induced U87 cell apoptosis. On day 50 after inoculation, tumor weight in the Notch2‑shRNA group was significantly lower than that in the negative‑shRNA group (0.55±0.10 vs. 1.23±0.52 g; P<0.01). The cumulative survival rate was significantly longer in the Notch2‑shRNA group compared with the negative‑shRNA group (log rank test P=0.01). In conclusion, Notch2 silencing inhibited U87 glioma cell proliferation by inducing cell cycle arrest and apoptosis in vitro and in vivo. Thus, Notch2 may be a key therapeutic target for the treatment of glioma.
منابع مشابه
Downregulation of Kinesin Spindle Protein Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity in Hepatocellular Carcinoma Cells
Background: Kinesin spindle protein (KSP) plays a critical role in mitosis. Inhibition of KSP function leads to cell cycle arrest at mitosis and ultimately to cell death. The aim of this study was to suppress KSP expression by specific small-interfering RNA (siRNA) in Hep3B cells and evaluate its anti-tumor activity. Methods: Three siRNA targeting KSP (KSP-siRNA #1-3) and one mismatched-siRNA (...
متن کاملOverexpression of N-myc downstream-regulated gene 1 inhibits human glioma proliferation and invasion via phosphoinositide 3-kinase/AKT pathways
N-myc downstream-regulated gene 1 (NDRG1) was previously shown to exhibit low expression in glioma tissue as compared with that in normal brain tissue; however, the role of NDRG1 in human glioma cells has remained to be elucidated. The present study used the U87 MG and SHG-44 human glioma cell lines as well as the normal human astrocyte cell line 1800, which are known to have differential NDRG1...
متن کاملDecreased CUL4B expression inhibits malignant proliferation of glioma in vitro and in vivo.
OBJECTIVE Cullin 4B (CUL4B) is a component of the Cullin 4B-Ring E3 ligase complex (CRL4B) that plays a role in proteolysis and is implicated in tumorigenesis. However, little is known about CUL4B function in human brain tumors, including glioma. MATERIALS AND METHODS Here, to investigate the involvement of CUL4B in glioma tumorigenesis, endogenous CUL4B expression was depleted in glioblastom...
متن کاملKnockdown of immature colon carcinoma transcript-1 inhibits proliferation of glioblastoma multiforme cells through Gap 2/mitotic phase arrest
"Glioblastoma multiforme" (GBM) is the frequent form of malignant glioma. Immature colon carcinoma transcript-1 (ICT1) is essential for cell vitality and mitochondrial function and has been recognized in several human cancers. In the study reported here, we attempted to evaluate the functional role of ICT1 in GBM cells. Lentivirus-mediated RNA interference (RNAi) was applied to silence ICT1 exp...
متن کاملRNAi-mediated inhibition of MSP58 decreases tumour growth, migration and invasion in a human glioma cell line
MSP58, a 58-kD nuclear microspherule protein, is an evolutionarily conserved nuclear protein implicated in the regulation of gene transcription as well as in malignant transformation. An analysis of mRNA expression by real-time PCR revealed that MSP58 was significantly up-regulated in 29% of high-grade glioblastoma tissues as well as in four glioblastoma cell lines. In the present study, we fur...
متن کامل